THE AMPHIBIOUS EDGE
THE AMPHIBIOUS EDGE
THERE’S NOT MUCH NEED TO TEST WHETHER THE NEW PARK AT HUNTER’S POINT SOUTH IN QUEENS WILL SURVIVE FLOODING. IT ALREADY HAS.

BY JONATHAN LERNER
Last summer, just half a year after Hurricane Sandy flooded much of New York City’s waterfront, a new park opened on the banks of the East River in Queens. This could easily have been regrettable timing, given that the design process began years earlier, in 2009, some time before the need to defend against periodic floods had become ingrained in the planning process. The architect Michael Manfredi, Affiliate ASLA, one of the designers, recalls that when the team first met with the local community board, “You couldn’t have a conversation about resilience.” It was seen as “provocative, overly alarmist.” Nevertheless, Manfredi and his collaborators, the landscape architect Thomas Balsley, FASLA, who heads Thomas Balsley Associates, and Marion Weiss, Manfredi’s coprincipal in the firm Weiss/Manfredi, created a riverine park that assumed periodic inundation. During Sandy, the nearly completed park went underwater, drained as it was supposed to, and was essentially unaffected.
The park was planned as part of the massive mixed-use redevelopment of a moribund 30-acre industrial zone spearheaded by the New York City Economic Development Corporation. As such, it shows thoughtful integration of public space with new urban fabric. Called Hunter’s Point South, the redevelopment will include some 5,000 high-rise housing units, about 100,000 square feet of retail and community space, and a 1,000-plus-seat public school, as well as the 11-acre park. (The school and the park’s $16 million first phase are finished; the first two residential towers are under construction. It is not yet determined when the redevelopment project, including the park’s second phase, will be completed.) Hunter’s Point South adjoins a similar renewal area that includes the recently created Gantry Plaza State Park. Together, the two projects will establish about a mile of continuous parkland on the Long Island City riverfront directly across the East River from Midtown Manhattan. The setting is remarkable, framed and energized by the kinetic activity of the river, the dramatic wall of Manhattan skyscrapers across from it, and the dense new neighborhood behind it that is rising toward a height of 40 stories.
The southernmost section of Gantry Plaza State Park, also designed by Balsley and Lee Weintraub, FASLA, and opened in 1998, had been railroad freight docks, and it has a rectilinear organization that reflects that history. A series of parallel piers that bring people out over the water is dominated by a pair of monumental historic gantries (traveling cranes that once lifted rail cars onto ferry boats). The transition from the earlier park into the new one is seamless, but once you cross through it the difference is immediately evident. The repeating geometry of piers gives way to an undulating shoreline. These natural contours inspired the park’s recurring motif of “crescent sweeps,” in Weiss’s words. “It’s not one big bar of a park, nor piers with their seriality. That became an opportunity.”
ABOVE
The main path follows the undulating shoreline.

BELOW
Manhattan's architectural icons punctuate views across the river.

OPPOSITE
A cutaway reveals the complex natural and infrastructural conditions of the site.
The northern phase, the first to be built, is conceived as urban and active. It includes the park’s main lawn, meant for both programmed and informal play. A curving pavilion hugs the lawn’s oval perimeter. There are a playground, basketball courts, a dog park, a native plant garden set among train tracks (a nod to the site’s industrial history), a sand “beach” (which doesn’t actually touch the water), and a commuter-ferry dock. In contrast, the southern (second) phase is envisioned as contemplative. “It’s a park of two spirits,” Balsley says, “program driven in the northern end, but then there’s a bit of an escape, not only in less activity but also in the elevational change.”

At the site’s southernmost point is a 30-foot hill, man-made of dumped fill. As the serpentine main path leading south nears its end there, several other paths will “unfurl,” in the designers’ term. One route will wind up to the crest of the hill to offer a 360-degree view, while another will encircle its base, skirting a salt marsh that will be established and stabilized behind riprap. Yet another trail will be located on the riprap, on the river side of the marsh; your experience there when walking could be as much about water as land. The intention of these alternative routes and outlooks is “to preserve

PLANT LIST

TREES
- *Amelanchier canadensis* (Canadian serviceberry)
- *Gleditsia triacanthos var. inermis* ‘Halka’
 (Halka honey locust)
- *Liquidambar styraciflua* (Sweet gum)
- *Nyssa sylvatica* (Black gum)
- *Pinus rigida* (Pitch pine)
- *Prunus x yedoensis* (Yoshino cherry)
- *Quercus phellos* (Willow oak)
- *Quercus rubra* (Northern red oak)

SHRUBS
- *Prunus maritima* (Beach plum)
- *Rosa* ‘Paloma Blanca’ (Shrub rose)

TREE UNDERSTORY PLANTINGS
- *Echinacea purpurea* (Eastern purple coneflower)
- *Eryngium yuccifolium* (Rattlesnake master)
- *Liriope muscari* (Big blue lily turf)

BIOFILTRATION PLANTINGS
- *Eupatorium maculatum* (Joe-pye weed)
- *Juncus effusus* (Common rush)
- *Onoclea sensibilis* (Sensitive fern)
- *Symphyotrichum novae-angliae* (New England aster)

PERENNIALS
- *Allium giganteum* (Giant onion)
- *Calamagrostis x acutiflora* ‘Karl Foerster’
 (Karl Foerster feather reed grass)
- *Echinacea purpurea* (Eastern purple coneflower)
- *Eryngium yuccifolium* (Rattlesnake master)
- *Nepeta x faassenii* ‘Walker’s Low’
 (Walker’s Low catmint)
- *Perovskia atriplicifolia* (Russian sage)
- *Salvia x superba* ‘May Night’ (May Night salvia)

COASTAL BLUESTEM
- *Schizachyrium littorale* (Coastal little bluestem)
- *Solidago sempervirens* (Seaside goldenrod)

GRASSES
- *Deschampsia cespitosa* ‘Schottland’
 (Scottish tufted hair grass)
- *Deschampsia flexuosa* (Crinkled hair grass)
- *Panicum virgatum* ‘Shenandoah’
 (Shenandoah switchgrass)
- *Pennisetum alopecuroides* ‘Hameln’
 (Dwarf fountain grass)
- *Sod* (Sod)

ABOVE
Ever-present views of the Midtown skyline make the new Queens neighborhood feel integrated with the larger city.

OPPOSITE
A sand “beach” is separated from the river by a seawall.
PLAN OF THE ACTIVE OVAL, PAVILION, AND WOOD DECK

- Precast concrete seatstep units at oval interior, all vertical faces curved, typ
- Precast concrete seatstep units at oval perimeter, all vertical faces curved, typ
- Precast concrete seatstep units offset
- Precast concrete integral bench
- Precast concrete seatsteps, see AS15
- Wood decking, see AS10
- Park synthetic turf, see landscape dwgs
- Park natural turf, see landscape dwgs
- Shade canopy, above
- Tree pit surfacing and planting, see landscape arch dwgs
- Park paving, see landscape arch dwgs

Legend:
- Precast conc seatstep color 1: to match sun precast #201
- Precast conc seatstep color 2: to match sun precast mix #703

Note:
- Precast conc seatstep colors to match noted color mix by SUN PRECAST CO., INC., PA (570) 458-6900
- Refer to specifications section 034100 for precast finishes

PET WOOD DECKING, SEE AS10

COMPANY NAME HERE

COURTESY WEISS/MANFREDI
the sense that you discovered it yourself," says Weiss, but also to foster internal dialogue between viewing the insistent—even overwhelming—panorama of the city and "coming down to the water and being that close to the otherness of it, unurban, unstructured."

A number of gestures will help the park mesh with the neighborhood and encourage real engagement between the new neighborhood and the larger city. All the new buildings will be separated from the park by its boundary, Center Boulevard, which is designed to have parallel parking along its length. As a result, the park's entry is fully public and cannot seem to be any building's private property. The boulevard is not linear but sinuous. Where it curves to mimic the shoreline, the street grid becomes radial, with the streets leading to the park aligned as view corridors that terminate across the river on iconic elements of the skyline. Where these streets meet the park, wood banquettes are positioned to offer park goers the same view. The rail garden in the northern part continues the path of one of these streets into the park. Likewise the park will seem to reach back through the neighborhood; one street will be a wide-planted mews that acts as a bioswale—green space and flood control for a high-rise waterfront neighborhood.

Given the scale and ambition of the whole Hunter's Point South redevelopment project, Balsley, Manfredi, and Weiss coordinated with a myriad of city and state agencies, other designers, multiple developers, and community groups. It may consequently be difficult to pinpoint exactly who on what team germinated which detail, because it all seems to fit together so well. "The project was extraordinarily public, and all of the client groups rose to the occasion and reached beyond their institutional turf," says Manfredi, adding, "Collaboration produced a much better product than we would have on our own."

The refinement of the idea for the main lawn, just across the street from the new school, illustrates that dynamic. The design team initially proposed a grassy oval, but the parks department argued...
The circle needs to stand up to a lot of activities, so the surface is artificial turf. The outer crescent is grass.
Another link to Manhattan: The East River Ferry has a stop within the park.
that “lush lawns get overused and turn into dirt,” Weiss says. “So pure ellipse gave way to circle and crescent.” The circle is paved with artificial turf; the crescent, embracing it and gently sloped like an amphitheater, is planted with grass. The park, Balsley points out, “is under parks department management, and not endowed with maintenance money. The design had to respect that—no fragile plantings or details. It had to be tough and rugged.”

That reality and the park’s need to handle stormwater and tidal inundation suggested many decisions. Durable kebonized wood was used for decking and furniture. A bioswale will receive runoff from Center Boulevard and the streets along the park’s boundary. The marsh, behind its porous riprap periphery, will ease the erosive effect of the scouring tides that characterize the river. Plants are hardy and salt-tolerant species that occur naturally in similarly exposed places in the region and can survive occasional inundation in brackish water. These include coastal little bluestem, seaside goldenrod, crinkled hair grass, joe-pye weed, purple coneflower, beach plum, Canadian serviceberry, honey locust, sweet gum, pitch pine, and willow oak. Balsley says, “If we had had an automatic irrigation system, we would have been tempted to go ranging beyond the native into the more interesting kinds of plants. But we had to stick with what we knew would survive.”

“What does it mean to create high-density housing where you’ve got the volatility of a waterfront?” Manfredi asks. If “to keep an urban condition alive you need to have pedestrian life,” then strategies like elevating buildings on pilings or restricting ground floors to passive uses such as parking, which preclude a vibrant pedestrian realm, hold little promise. “That’s why parks are the very best thing to do. They can actually modify topography, create resilience, and work at the edge in an anticipatory condition.”

ABOVE
A snack bar, restrooms, and space for café seating are accommodated under the floating roof of the pavilion.
1. Base geometry and grid extracted from site context
2. Projection of base curves to adjustable elevation
3. Beam connecting the divided points of projections
4. Crossbeam following the projection of grid line
5. Canted columns between top and bottom cross points
6. Folded surface panels between segments
7. Building under canopy follows the geometry
8. Integrated model with all building elements
In the near term at least, in New York and many other cities, new waterfront development is under way and inevitable. Given the equal certainty of sea-level rise and increasingly powerful storms, strategies for receiving and surviving high water will be essential to making these places habitable. Hunter’s Point South Park puts some of those ideas to work while offering its neighbors an engaging outdoor space. Even with the new neighborhood only partially built, the park has been embraced and is being used with enthusiasm every day.

JONATHAN LERNER WRITES ON ARCHITECTURE, PLANNING, ART, AND DESIGN FOR NATIONAL MAGAZINES AND FOR PROFESSIONALS IN THOSE FIELDS. FIND HIM AT WWW.URBANISTCOMMUNICATIONS.COM.

Project Credits

CLIENT NEW YORK CITY ECONOMIC DEVELOPMENT CORPORATION.
PARK DESIGNERS THOMAS BALSLEY ASSOCIATES, NEW YORK (THOMAS BALSLEY, ASLA, DESIGN PRINCIPAL; CHRISTIAN GABRIEL, ASLA; DALE SCHAFFER, ASLA; AND MICHAEL KONDITZ, ASLA) AND WEISS/MANFREDI, NEW YORK (MARION WEISS AND MICHAEL A. MANFREDI, AFFILIATE ASLA, DESIGN PARTNERS; CHRISTOPHER BALLENTINE, PROJECT MANAGER; MICHAEL STEINER AND LEE LIM, PROJECT ARCHITECTS; MICHAEL BLASBERG, ALICE CHAI, NICK ELLIOT, HYOUNG-GUL KOOK, AND JOE VESSELL). PRIME CONSULTANT AND INFRASTRUCTURE DESIGNER ARUP, NEW YORK (MATT BEST, MICHAEL NEWEY, AND JAMES DEMARCO). PRIME CONSULTANT, CIVIL, STRUCTURAL ENGINEER, AND LIGHTING DESIGN ARUP, NEW YORK. ECOLOGICAL SYSTEMS AND RESTORATION ECOLOGIST EDESIGN DYNAMICS, NEW YORK. MARINE ENGINEERING HALCROW, NEW YORK. PUBLIC ART KARYN OLIVIER, NEW YORK. MEPP ENGINEERING A. G. CONSULTING ENGINEERING, P.C., NEW YORK. ENVIRONMENTAL ENGINEER YU & ASSOCIATES, NEW YORK. COST ESTIMATOR VJ ASSOCIATES, NEW YORK. TRAFFIC ENGINEER B-A ENGINEERING, P.C., NEW YORK. PERMITTING EXPEDITOR KM ASSOCIATES OF NEW YORK, INC., NEW YORK. GRAPHIC DESIGNER TWO TWELVE, NEW YORK. HISTORICAL RESEARCHER AFR, NEW YORK. RESIDENT ENGINEER THE LIRO GROUP, NEW YORK.